(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

minus(n__0, Y) → 0
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
div(0, n__s(Y)) → 0
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(div(minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
0n__0
s(X) → n__s(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(X) → X

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

minus(n__0, Y) → 0'
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
div(0', n__s(Y)) → 0'
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(div(minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
0'n__0
s(X) → n__s(X)
activate(n__0) → 0'
activate(n__s(X)) → s(X)
activate(X) → X

S is empty.
Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Innermost TRS:
Rules:
minus(n__0, Y) → 0'
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
div(0', n__s(Y)) → 0'
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(div(minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
0'n__0
s(X) → n__s(X)
activate(n__0) → 0'
activate(n__s(X)) → s(X)
activate(X) → X

Types:
minus :: n__0:n__s → n__0:n__s → n__0:n__s
n__0 :: n__0:n__s
0' :: n__0:n__s
n__s :: n__0:n__s → n__0:n__s
activate :: n__0:n__s → n__0:n__s
geq :: n__0:n__s → n__0:n__s → true:false
true :: true:false
false :: true:false
div :: n__0:n__s → n__0:n__s → n__0:n__s
s :: n__0:n__s → n__0:n__s
if :: true:false → n__0:n__s → n__0:n__s → n__0:n__s
hole_n__0:n__s1_1 :: n__0:n__s
hole_true:false2_1 :: true:false
gen_n__0:n__s3_1 :: Nat → n__0:n__s

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
minus, geq, div

They will be analysed ascendingly in the following order:
minus < div
geq < div

(6) Obligation:

Innermost TRS:
Rules:
minus(n__0, Y) → 0'
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
div(0', n__s(Y)) → 0'
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(div(minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
0'n__0
s(X) → n__s(X)
activate(n__0) → 0'
activate(n__s(X)) → s(X)
activate(X) → X

Types:
minus :: n__0:n__s → n__0:n__s → n__0:n__s
n__0 :: n__0:n__s
0' :: n__0:n__s
n__s :: n__0:n__s → n__0:n__s
activate :: n__0:n__s → n__0:n__s
geq :: n__0:n__s → n__0:n__s → true:false
true :: true:false
false :: true:false
div :: n__0:n__s → n__0:n__s → n__0:n__s
s :: n__0:n__s → n__0:n__s
if :: true:false → n__0:n__s → n__0:n__s → n__0:n__s
hole_n__0:n__s1_1 :: n__0:n__s
hole_true:false2_1 :: true:false
gen_n__0:n__s3_1 :: Nat → n__0:n__s

Generator Equations:
gen_n__0:n__s3_1(0) ⇔ n__0
gen_n__0:n__s3_1(+(x, 1)) ⇔ n__s(gen_n__0:n__s3_1(x))

The following defined symbols remain to be analysed:
minus, geq, div

They will be analysed ascendingly in the following order:
minus < div
geq < div

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
minus(gen_n__0:n__s3_1(+(2, n5_1)), gen_n__0:n__s3_1(+(1, n5_1))) → minus(gen_n__0:n__s3_1(1), gen_n__0:n__s3_1(0)), rt ∈ Ω(1 + n51)

Induction Base:
minus(gen_n__0:n__s3_1(+(2, 0)), gen_n__0:n__s3_1(+(1, 0))) →RΩ(1)
minus(activate(gen_n__0:n__s3_1(1)), activate(gen_n__0:n__s3_1(0))) →RΩ(1)
minus(gen_n__0:n__s3_1(1), activate(gen_n__0:n__s3_1(0))) →RΩ(1)
minus(gen_n__0:n__s3_1(1), gen_n__0:n__s3_1(0))

Induction Step:
minus(gen_n__0:n__s3_1(+(2, +(n5_1, 1))), gen_n__0:n__s3_1(+(1, +(n5_1, 1)))) →RΩ(1)
minus(activate(gen_n__0:n__s3_1(+(2, n5_1))), activate(gen_n__0:n__s3_1(+(1, n5_1)))) →RΩ(1)
minus(gen_n__0:n__s3_1(+(2, n5_1)), activate(gen_n__0:n__s3_1(+(1, n5_1)))) →RΩ(1)
minus(gen_n__0:n__s3_1(+(2, n5_1)), gen_n__0:n__s3_1(+(1, n5_1))) →IH
minus(gen_n__0:n__s3_1(1), gen_n__0:n__s3_1(0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

Innermost TRS:
Rules:
minus(n__0, Y) → 0'
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
div(0', n__s(Y)) → 0'
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(div(minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
0'n__0
s(X) → n__s(X)
activate(n__0) → 0'
activate(n__s(X)) → s(X)
activate(X) → X

Types:
minus :: n__0:n__s → n__0:n__s → n__0:n__s
n__0 :: n__0:n__s
0' :: n__0:n__s
n__s :: n__0:n__s → n__0:n__s
activate :: n__0:n__s → n__0:n__s
geq :: n__0:n__s → n__0:n__s → true:false
true :: true:false
false :: true:false
div :: n__0:n__s → n__0:n__s → n__0:n__s
s :: n__0:n__s → n__0:n__s
if :: true:false → n__0:n__s → n__0:n__s → n__0:n__s
hole_n__0:n__s1_1 :: n__0:n__s
hole_true:false2_1 :: true:false
gen_n__0:n__s3_1 :: Nat → n__0:n__s

Lemmas:
minus(gen_n__0:n__s3_1(+(2, n5_1)), gen_n__0:n__s3_1(+(1, n5_1))) → minus(gen_n__0:n__s3_1(1), gen_n__0:n__s3_1(0)), rt ∈ Ω(1 + n51)

Generator Equations:
gen_n__0:n__s3_1(0) ⇔ n__0
gen_n__0:n__s3_1(+(x, 1)) ⇔ n__s(gen_n__0:n__s3_1(x))

The following defined symbols remain to be analysed:
geq, div

They will be analysed ascendingly in the following order:
geq < div

(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
geq(gen_n__0:n__s3_1(n4018_1), gen_n__0:n__s3_1(+(1, n4018_1))) → false, rt ∈ Ω(1 + n40181)

Induction Base:
geq(gen_n__0:n__s3_1(0), gen_n__0:n__s3_1(+(1, 0))) →RΩ(1)
false

Induction Step:
geq(gen_n__0:n__s3_1(+(n4018_1, 1)), gen_n__0:n__s3_1(+(1, +(n4018_1, 1)))) →RΩ(1)
geq(activate(gen_n__0:n__s3_1(n4018_1)), activate(gen_n__0:n__s3_1(+(1, n4018_1)))) →RΩ(1)
geq(gen_n__0:n__s3_1(n4018_1), activate(gen_n__0:n__s3_1(+(1, n4018_1)))) →RΩ(1)
geq(gen_n__0:n__s3_1(n4018_1), gen_n__0:n__s3_1(+(1, n4018_1))) →IH
false

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(11) Complex Obligation (BEST)

(12) Obligation:

Innermost TRS:
Rules:
minus(n__0, Y) → 0'
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
div(0', n__s(Y)) → 0'
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(div(minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
0'n__0
s(X) → n__s(X)
activate(n__0) → 0'
activate(n__s(X)) → s(X)
activate(X) → X

Types:
minus :: n__0:n__s → n__0:n__s → n__0:n__s
n__0 :: n__0:n__s
0' :: n__0:n__s
n__s :: n__0:n__s → n__0:n__s
activate :: n__0:n__s → n__0:n__s
geq :: n__0:n__s → n__0:n__s → true:false
true :: true:false
false :: true:false
div :: n__0:n__s → n__0:n__s → n__0:n__s
s :: n__0:n__s → n__0:n__s
if :: true:false → n__0:n__s → n__0:n__s → n__0:n__s
hole_n__0:n__s1_1 :: n__0:n__s
hole_true:false2_1 :: true:false
gen_n__0:n__s3_1 :: Nat → n__0:n__s

Lemmas:
minus(gen_n__0:n__s3_1(+(2, n5_1)), gen_n__0:n__s3_1(+(1, n5_1))) → minus(gen_n__0:n__s3_1(1), gen_n__0:n__s3_1(0)), rt ∈ Ω(1 + n51)
geq(gen_n__0:n__s3_1(n4018_1), gen_n__0:n__s3_1(+(1, n4018_1))) → false, rt ∈ Ω(1 + n40181)

Generator Equations:
gen_n__0:n__s3_1(0) ⇔ n__0
gen_n__0:n__s3_1(+(x, 1)) ⇔ n__s(gen_n__0:n__s3_1(x))

The following defined symbols remain to be analysed:
div

(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol div.

(14) Obligation:

Innermost TRS:
Rules:
minus(n__0, Y) → 0'
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
div(0', n__s(Y)) → 0'
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(div(minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
0'n__0
s(X) → n__s(X)
activate(n__0) → 0'
activate(n__s(X)) → s(X)
activate(X) → X

Types:
minus :: n__0:n__s → n__0:n__s → n__0:n__s
n__0 :: n__0:n__s
0' :: n__0:n__s
n__s :: n__0:n__s → n__0:n__s
activate :: n__0:n__s → n__0:n__s
geq :: n__0:n__s → n__0:n__s → true:false
true :: true:false
false :: true:false
div :: n__0:n__s → n__0:n__s → n__0:n__s
s :: n__0:n__s → n__0:n__s
if :: true:false → n__0:n__s → n__0:n__s → n__0:n__s
hole_n__0:n__s1_1 :: n__0:n__s
hole_true:false2_1 :: true:false
gen_n__0:n__s3_1 :: Nat → n__0:n__s

Lemmas:
minus(gen_n__0:n__s3_1(+(2, n5_1)), gen_n__0:n__s3_1(+(1, n5_1))) → minus(gen_n__0:n__s3_1(1), gen_n__0:n__s3_1(0)), rt ∈ Ω(1 + n51)
geq(gen_n__0:n__s3_1(n4018_1), gen_n__0:n__s3_1(+(1, n4018_1))) → false, rt ∈ Ω(1 + n40181)

Generator Equations:
gen_n__0:n__s3_1(0) ⇔ n__0
gen_n__0:n__s3_1(+(x, 1)) ⇔ n__s(gen_n__0:n__s3_1(x))

No more defined symbols left to analyse.

(15) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_n__0:n__s3_1(+(2, n5_1)), gen_n__0:n__s3_1(+(1, n5_1))) → minus(gen_n__0:n__s3_1(1), gen_n__0:n__s3_1(0)), rt ∈ Ω(1 + n51)

(16) BOUNDS(n^1, INF)

(17) Obligation:

Innermost TRS:
Rules:
minus(n__0, Y) → 0'
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
div(0', n__s(Y)) → 0'
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(div(minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
0'n__0
s(X) → n__s(X)
activate(n__0) → 0'
activate(n__s(X)) → s(X)
activate(X) → X

Types:
minus :: n__0:n__s → n__0:n__s → n__0:n__s
n__0 :: n__0:n__s
0' :: n__0:n__s
n__s :: n__0:n__s → n__0:n__s
activate :: n__0:n__s → n__0:n__s
geq :: n__0:n__s → n__0:n__s → true:false
true :: true:false
false :: true:false
div :: n__0:n__s → n__0:n__s → n__0:n__s
s :: n__0:n__s → n__0:n__s
if :: true:false → n__0:n__s → n__0:n__s → n__0:n__s
hole_n__0:n__s1_1 :: n__0:n__s
hole_true:false2_1 :: true:false
gen_n__0:n__s3_1 :: Nat → n__0:n__s

Lemmas:
minus(gen_n__0:n__s3_1(+(2, n5_1)), gen_n__0:n__s3_1(+(1, n5_1))) → minus(gen_n__0:n__s3_1(1), gen_n__0:n__s3_1(0)), rt ∈ Ω(1 + n51)
geq(gen_n__0:n__s3_1(n4018_1), gen_n__0:n__s3_1(+(1, n4018_1))) → false, rt ∈ Ω(1 + n40181)

Generator Equations:
gen_n__0:n__s3_1(0) ⇔ n__0
gen_n__0:n__s3_1(+(x, 1)) ⇔ n__s(gen_n__0:n__s3_1(x))

No more defined symbols left to analyse.

(18) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_n__0:n__s3_1(+(2, n5_1)), gen_n__0:n__s3_1(+(1, n5_1))) → minus(gen_n__0:n__s3_1(1), gen_n__0:n__s3_1(0)), rt ∈ Ω(1 + n51)

(19) BOUNDS(n^1, INF)

(20) Obligation:

Innermost TRS:
Rules:
minus(n__0, Y) → 0'
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
div(0', n__s(Y)) → 0'
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(div(minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
0'n__0
s(X) → n__s(X)
activate(n__0) → 0'
activate(n__s(X)) → s(X)
activate(X) → X

Types:
minus :: n__0:n__s → n__0:n__s → n__0:n__s
n__0 :: n__0:n__s
0' :: n__0:n__s
n__s :: n__0:n__s → n__0:n__s
activate :: n__0:n__s → n__0:n__s
geq :: n__0:n__s → n__0:n__s → true:false
true :: true:false
false :: true:false
div :: n__0:n__s → n__0:n__s → n__0:n__s
s :: n__0:n__s → n__0:n__s
if :: true:false → n__0:n__s → n__0:n__s → n__0:n__s
hole_n__0:n__s1_1 :: n__0:n__s
hole_true:false2_1 :: true:false
gen_n__0:n__s3_1 :: Nat → n__0:n__s

Lemmas:
minus(gen_n__0:n__s3_1(+(2, n5_1)), gen_n__0:n__s3_1(+(1, n5_1))) → minus(gen_n__0:n__s3_1(1), gen_n__0:n__s3_1(0)), rt ∈ Ω(1 + n51)

Generator Equations:
gen_n__0:n__s3_1(0) ⇔ n__0
gen_n__0:n__s3_1(+(x, 1)) ⇔ n__s(gen_n__0:n__s3_1(x))

No more defined symbols left to analyse.

(21) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_n__0:n__s3_1(+(2, n5_1)), gen_n__0:n__s3_1(+(1, n5_1))) → minus(gen_n__0:n__s3_1(1), gen_n__0:n__s3_1(0)), rt ∈ Ω(1 + n51)

(22) BOUNDS(n^1, INF)